
JOURNAL OF COMPUTATIONAL PHYSICS 11, 3333347 (1973) 

The Calculation of Potential Gradients in a Moving Normal 

Region within a Superconducting Thin Film 

DEREK C. BARKER 

Department of Electrical Engineering and Electronics, 
Uniwrsity of Manchester Institute of Science and Technology, Manchester, England 

Received March 13, 1972 

A possible realization of Crane’s “Neuristor” active transmission line uses a super- 
conducting thin film superimposed on a normally conducting thin film or substrate. 
Its performance is dependent on velocity-induced asymmetries of the temperature 
distribution in a small moving normal region within the superconducting film. 

The temperature distribution is a function of local Joule heat generation in the normal 
region (and adjacent conductor). It is, therefore, necessary to obtain information on the 
current density (or potential gradient) distribution in this area. 

In this paper the author discusses the numerical solution to the potential gradient 
problem. Conditions for convergence of the iterative program for E, are derived and 
tested. Computation errors are estimated for E, and for the continuity equation solution 
for E, . Typical results are presented for two values of displacement velocity, using a 
37 x 37 node mesh. 

1. INTRODUCTION 

The work of Crane [l-3] and others [4-111 on the theory of the “Neuristor” 
line has led various workers [12-141 to consider physical realizations for this type 
of active transmission line. Chambers [13] and Green [23] make use of the fact 
that the transition of a superconductor from its superconducting to its normal 
phase, under the influence of a current through it, can be influenced by the 12R 
heat generated in nearby normal regions. It is possible to control the dimensions 
of a normal region in this manner, using a sustaining current substantially smaller 
than the critical current [15]. As the expected thermal relaxation times are of the 
order of lo-@ set or less, very fast boundary motion is possible. 

Chambers proposed a line consisting of two long thin metallic films in intimate 
contact, one a superconductor, the other a good conductor. A biasing current 
would flow longitudinally in the superconductor. If a normal region is established 
(in some unspecified manner), the current would, after entering the normal region, 
redistribute so as to flow in both films (Fig. I). 
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i--V d 

FIG. 1. Current redistribution in normal phase and adjacent conductor. 

As a result, the J2p losses, per unit volume, would be greater close to the interphase 
boundary than at some greater distance into the normal phase. Thus, he anticipated 
that it would be possible to adjust the biasing current so that the heat generated 
close to the boundary would be sufficient to cause the boundary to advance into 
the superconducting phase, while at some distance d into the normal phase it 
would be insufficient to prevent the restoration of superconductivity. The resultant 
effect would be a normal region moving along the superconducting line (Fig. 2), 
and it is easy to show that it would possess the defining characteristics of Crane’s 
hypothetical “Neuristor.” 

t----dl 

FIG. 2. Initial visualization of current flow patterns in moving normal region and adjacent 
conductor. 

2. STATEMENTOFTHE~ROBLEM 

Chamber’s visualization of his proposed line is imperfect in the basic under- 
standing of the current distribution patterns in the normal phase and adjacent 
good conductor. It has been shown [16] that the electrical relaxation times in both 
the normal phase and the superconducting phase are such that his anticipated 
current distribution is obtainable only at velocities in excess of IO5 m/set for 
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1000 A films. These velocities are clearly excessive for experimental work and it 
is necessary to consider the current distribution at lower velocities. For zero and 
very low velocities the current distribution would be symmetrical (V2J = 0), as 
shown in Fig. 3. Clearly, the temperature distribution will also be symmetrical, 
and both boundaries will move outwards or inwards in unison. 

FIG. 3. Current flow patterns in moving normal phase and adjacent conductor for zero and 
low displacement velocities. 

As the velocity is increased, a degree of asymmetry is introduced (Fig. 4) and 
the heats generated near the boundaries begin to differ, so that it is in principle 
possible to establish conditions suitable for unidirectional motion of the normal 
phase. Further examination of the feasibility of this line requires detailed informa- 
tion on the temperature distribution as a function of materials, velocity of propa- 
gation and bath temperature. 

FIG. 4. Current flow patterns in moving normal phase and adjacent conductors, showing 
anticipated asymmetries due to intermediate displacement velocities. 

It is the purpose of this paper to derive the equations describing current densi- 
ties/potential gradients in the moving normal region, and to show how these 
equations may be resolved numerically. The temperature distribution may then 
be obtained without further difficulty (see Appendix). 
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3. DERIVATION OF EQUATIONS 

Examination of Fig. 4 shows that at reasonably low velocities the current will 
enter and leave the superconducting phase exclusively across the interphase 
boundary. For this reason it is only necessary to analyze the region a-d in Fig. 5, 
and as the normal phase can be considered as any other good conductor, only one 
set of equations is required. From Maxwell’s equations, neglecting displacement 
currents. 

v x c x E = -p(aE/at), (1) 

from where we obtain the pair of coupled equations in two dimensions: 

(S2E,/SX 6 Y) - (PE,/SY2) = -pa(SE,/St), (24 
(a”E,/aX ar> - (a2EJaX2) = -pa(aE,/at). (2b) 

The change of variable 5 = X - vl, where v is displacement velocity and t is 
time, leads to 

-(azE,/a( aY) + (a2E,/aY2) = -puv(aE,/a~), 

-(azE,/ag ar> + (a2E,/ap) = -puv(aE,/ag), 
(38 

(3b) 

and further manipulation yields 

(azE,/ap) + (a2EJaY2) = -pJv(aE,/ag), 
(a2EJag”) + (a2EJa Y2) = -puv(aE,/a[>, 

and the continuity equation 

(44 
(4b) 

(a-w0 + wv y) = 0. (5) 

Either Eq. (4a) or (4b) (one is redundant) in conjunction with Eq. (5) can be 
used to describe the current distribution in the region of interest. Equations (3a) 
and (3b) are unsuitable for computational purposes due to the cross differential 
terms. 

4. BOUNDARY CONDITIONS 

The boundary conditions are complex and in some respects difficult to define. 
A major problem arises from the nature of the normal/superconducting interphase 
boundaries. In principle, these boundaries are defined by the critical temperatures 
T, of the material as a function of local current density and, due to coherence 
effects, will be a region of change rather than an abrupt demarcation line. Though 
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in very thin films it is reasonable to assume a uniform current density in the super- 
conducting phase, in thicker films a true current distribution would have to be 
computed. Furthermore, there is no reason to believe that the temperature will 
be uniform on a film cross section normal to the direction of motion, so even for 
very thin films it is unlikely that the interphase boundary will be normal to the 
direction of motion. 

To resolve this problem it is necessary to use an iterative approach, correcting 
assumed initial boundary geometries on the basis of calculated temperatures and 
current distributions, repeating the process until no further corrections are 
required. Apart from possible convergence problems the computational effort 
required is excessive, and due to the coherence length effects the results would be 
inaccurate. 

To avoid the complexities of the above procedure the author has preferred to 
work with a simple boundary geometry, normal to the direction of motion, and 
with uniform current density in the superconducting phase (constant 7’J. The 
total current or the He bath temperature may then be adjusted until the calculated 
temperatures approximate Ii-, at the boundaries. Though the results obtained will 
be inaccurate, the errors will not be too large, and a useful guide to the magnitudes 
and distributions of the temperatures in the composite film will be obtained. The 
region of calculation is then limited to the rectangle AC FD (Fig. 5) in which AB 
and DE represent the interphase boundaries, over which J, = cf, J, = 0. 

1 \ , H\elium bath 

\ \ A ,\’ \‘h ,-,‘, ’ 

S S 

81 IE 
I I 

I 
I 

I G. C. ; 
, 

/ / c////p///// / I=/ / 

Substrate 
I 

FIG. 5. Boundaries for computational purposes. 

Over BC and EF, J = 0, hence J, = J, = 0 and the remaining problems concern 
AD and CF. Let us consider a series of superimposed films, alternating super- 
conductor/good conductor, as in Fig. 6. The thicknesses of films of the same type 
are all equal. Then, if all the superconducting films carry equal biasing currents, and 
have identical normal regions, the current distribution shown in Fig. 6 is expected. 

581/11/3-3 
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Good Conductor 

FIG. 6. Mirror image symmetries used for establishing boundary conditions. 

If the films are now cut and separated along the symmetry planes A-A‘ and 
B-B’ the current patterns will remain unaltered. Replacing the region above 
A-A’ and below B-B’ by nonmagnetic insulators (He bath, substrate) will not 
alter the current patterns. Hence we deduce that for AD and CF (Fig. 5) the Neu- 
mann condition aJ/aY = 0 (aJ,/aY = aJ,/aY = 0) and the Dirichlet condition 
J, = 0 apply. The former is equivalent to saying that at corresponding nodes m 
and -m on opposite sides of the symmetry planes we have J, = Jr-, and 

Ju, = -Ju-, . Thus, the discretized form of Eq. (4a) may be asplied to the 
boundary nodes with only minor modifications. 

5. COMPUTATIONAL ANALYSIS 

It was mentioned in Section 3 that either Eq. (4a) or Eq. (4b) must be discarded 
as redundant. In some situations there may be little reason to choose one or the 
other, but for the present problem it is necessary to discard (4b) because it does 
not possess a unique solution (E,$ j = 0 is an obvious solution). Furthermore, 
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the solution of the continuity equation requires initial values along either AD 
or CF and must, therefore, be applied to E, . For these reasons we will discuss 
(a) Eq. (4a) and (b) the continuity equation. 

(a) Equation (4a). Though it is possible to obtain general analytical solutions 
to Eq. (4), the introduction of boundary conditions greatly complicates the anal- 
ysis for all except the most idealized conditions. Hence, for any realistic geometry 
it is necessary to turn to numerical methods. These calculate the value of the 
dependent variable (E) at N points (nodes) distributed throughout the region of 
interest. The discretization process establishes one equation per node, so the 
numerical method reduces to the solution of N simultaneous equations, and the 
choice of method is dependent on the value of N. 

In the present situation we are looking for small asymmetries in an essentially 
symmetrical current distribution, so it is the author’s opinion that the separation 
between (uniformly distributed) adjacent nodes should be a small proportion 
(< 5 %) of the corresponding axial dimension of the region. If n is the number of 
rows and of columns, N = n2 and direct methods require the storage of an 
N x N matrix (n” store locations if nonsymmetrical). For n = 20, at least 
160 000 locations are required, the number rising rapidly as greater resolution is 
called for. For this reason iterative methods are to be preferred, provided conver- 
gence can be established, even though the reduced storage (m n’) is achieved at 
the expense of running time. 

A convenient iterative scheme is successive over relaxation (SOR) applied to the 
Gauss-Seidel method (block iterative relaxation methods would theoretically 
yield improved convergence rates, but it seems doubtful whether the improvements 
would compensate for extra time involved in solution of implicit equations). 
It can be shown that the Gauss-Seidel method will converge when the matrix of 
the discretized equation has diagonal dominance and is irreducible. Considering 
Eq. (4a), its discretized form yields 

-t +w/~~)E,~+,,~ - L-1, j)l, (6) 

where ED,, is the value of E, at the node in column p, row 4, and h, k are spacings 
between columns and rows, respectively. 

Examination of the matrix reveals that the condition for diagonal dominance, 

(7) 
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with strict inequality for at least one value of i, can be guaranteed by the inequality 

pvh < 2, (8) 

while the method of directed graphs can be used to show that it is irreducible. 

(b) The continuity equation. The solution to (4a) yields, subject to appro- 

priate boundary conditions, the value of E,z at each node. The value of E, must 

then be obtained using Eq. (5). An immediate problem is that the discretized 

form of this equation does not yield an explicit value of E,* j . We can however, 
use the Taylor expansion 

f(x) = f(a) t f”(a)(X - a) + f”@)(X - a)72! + ... + f”(a)(X - a)“//?!, 

the values off”(a) being computed from Eq. (5) as follows: 

(9) 

f”(a) = 8E,$Y = -%,5,/6X, (10) 

f"'(a) = @E,/3 Y* = -32E,/3X %Y = 2f “(a)/aY, (11) 

f”(a) = 3E,/aY” = -ZJ~~E,/~A’ i3Y”-l = 8-1fi(a)/aYyf-1. (12) 

These differential terms may be expanded in terms of central differences as follows: 

f”(a,,) = (l/h)[S,l - (ao3/6) t (6,5/30) - (S,‘/l40) + . ..I. (13) 

.fii(a,) = (l/h2)[S2,, - (6,,“/12) -+ (6,B/90) - . ..I. (14) 

f”ii(ao) = (l/h”)[S,” ~ (805/4) i- . ..I. (15) 

fi”(a,) = (l/h”)[6,” ~ (SOG/6) 4 . ..I. (16) 

in which 8011 is the M-th order central difference term, corresponding to a, 

119, p. 511. 

The program outline is then fairly simple: The central difference terms for E, are 
tabulated for each node, Eq. (13) being then used to compute BE$BX at all nodes. 

It is then possible to tabulate central difference terms for aE,/aY (= --8&/8X) 

at all nodes, from which higher order derivatives may be calculated using 

Eqs. (13)-( 16). Equation (9) and the boundary values for Eui o yield Eui 1 . Repe- 
tition yields E,,j for 1 <,i c, n, the last value being used as ‘a check oh overall 

accuracy as it must agree with the known boundary conditions on row II. 

6. RESULTS 

(a) Convergence of the SOR Program 

A computer program was written embodying the preceding conclusions. The 
determination of acceleration factors followed the scheme outlined by Carrd [18]. 



TA
BL

E 
I 

Er
ro

r 
Es

tim
at

es
 

[1
8]

 a
fte

r 
Ea

ch
 

12
 C

yc
le

 
G

ro
up

.‘L
 

\ 
~&

-I 
0.

6 
v 

= 
1.

88
4 

cy
cl

es
 \

 
u 

0.
3 

x 
10

6m
/s

ec
 

~~
~_

__
__

_ 
-~

 
V

/m
 

2-
13

 
7.

68
 

x 
10

m
3 

14
-2

5 
2.

43
 

x 
lo

-*
 

26
-3

7 
-1

.4
3 

x 
10

--e
 

38
-4

9 
-2

.8
9 

x 
1O

m
8 

50
-6

1 
1.

01
 

x 
10

-g
 

62
-7

3 
-3

.2
1 

x 
lo

-*
 

74
-8

5 
-5

.2
3 

x 
IO

-@
 

86
-9

7 
5.

43
 

x 
10

-1
0 

98
-1

09
 

1.
81

 
x 

10
-l”

 
I I

O
-1

21
 

-4
.1

9 
x 

lo
-‘>

 
12

2-
13

3 
1.

02
 x

 
lo

-‘*
 

13
4-

14
5 

00
0 . 

Y I 
1o

-“9
 

0.
68

 T
 =

 
2.

13
 

0.
34

 
x 

10
8m

/s
ec

 

V
/m

 

1.
34

 
x 

10
0 

5.
39

 
x 

10
0 

-7
.8

8 
x 

lo
-” 

-2
.7

2 
x 

10
-l 

-3
.5

0 
x 

10
-z

 
6.

52
 

x 
1O

-4
 

3.
71

 
x 

lo
-” 

-5
.8

9 
x 

lo
-l2

 
-3

.9
8 

x 
lo

-=
 

-1
 

56
 

1:
07

 
x 

lo
-” 

x 
10

-l”
 

5.
93

 
x 

lo
-“’

 

rr 

0.
5 

x 
10

6m
/s

ec
 

~.
 V

/m
 

-1
.2

0 
x 

IO
” 

-2
.8

9 
x 

lo
2 

-3
.8

2 
x 

10
-l 

-8
.8

5 
x 

10
-4

 
8.

50
 

x 
IO

-‘”
 

5.
78

 
x 

10
-l”

 
7.

36
 

x 
1O

-‘o
 

2.
90

 
x 

lo
-” 

-7
.6

9 
x 

lo
-‘I

 
-6

.6
8 

x 
lo

-1
3 

1.
91

 
x 

10
-l”

 
4.

60
 

x 
lo

-=
 

1.
4 

n 
= 

4.
39

6 
0.

7 
x 

IO
” 

m
/s

et
 

~~
~~

__
_~

~ 
V

/m
 

-6
.7

6 
x 

10
’ 

-2
.0

0 
x 

10
6 

2.
45

 
x 

lo
2 

-3
.0

2 
x 

1O
’O

 
6.

85
 

x 
10

s 
-5

.0
5 

x 
lo

j 
-8

.1
5 

x 
10

2 
-1

.0
9 

x 
10

” 
-6

.2
0 

x 
10

5 
2.

62
 

x 
IO

3 
-2

.1
7 

x 
IO

2 
m

m
m

6.
23

 
x 

10
m

3 

27
7 

I .
O

 x
 

lo
6 

m
is

ec
 

V
/m

 

-1
.5

9 
x 

10
’9

 
-4

.2
8 

x 
10

” 
-7

.9
8 

x 
lo

= 
-2

.6
0 

x 
10

” 
-6

.7
8 

x 
1O

1’
 

-2
.6

0 
x 

1O
l8

 
-1

.7
1 

x 
10

” 
-7

.4
6 

x 
10

’” 
-2

.7
4 

x 
10

18
 

3.
36

 
x 

10
” 

8.
72

 
x 

1O
l6

 
1.

47
4 

x 
10

’” 

Y 
0.

04
1 

2 
5.

4 
x 

lo
6 

m
js

ec
 

3 
--~

 
~~

 
V

im
 

G
: 

1.
98

 
x 

10
’ 

2 

6.
31

 
x 

10
-l 

5 
-2

.7
3 

x 
10

-l 
-2

.7
5 

x 
10

-l 
2 0 

--6
.3

9 
x 

10
-l 

9.
80

 
x 

10
-l 

1.
25

 
x 

10
0 

2.
15

 
x 

10
-l 

1.
30

 x
 

10
-l 

z 
-6

.6
6 

x 
10

-a
 

0 
6.

25
 

x 
lo

-*
 

g 
1.

41
 x

 
10

-G
 

W
-J

 
- 

‘In
te

rp
ha

se
 

Bo
un

da
ry

 
va

lu
es

: 
E,

 
= 

17
6 

V
/m

. 
In

iti
al

 
va

lu
es

: 
E,

 
= 

88
 V

/m
. 



342 BARKER 

A 37 x 37 mesh was used (n* w 1.8 x 106), providing reasonable resolution and 
the facility for intermediate abridged (10 x 10) printouts every 12 iterations. 
Convergence tests were performed using the following parameters: 

h = k = 5 x lo-@ m, 

p = 47~ x lo-’ H/m, 

u = lO* (Sz - m)-’ (assumed equal for good conductor and normal phase). 

For path = 2, u = 106/r = 0.318 x lo6 mjsec. The program was tested for 
pub = 1.885, 2.136, 7~, 4.396 and 27r. Table I shows the behavior of the error 
estimates [18], while the calculated values of acceleration factor are shown in 
Fig. 7. It can be seen that for path < n the error estimates are small and reducing, 
even though the acceleration factors B [ratio (actual/calculated) nodal increments] 

FIG. 7. Acceleration factors used in SOR programs, calculated according to Carrk [183; con- 
vergent for ~LOVIZ = 0.041 (a), 1.884 (b), 2.13 (c) and n (d); nonconvergent for puuh = 4.396 (x) 
and 271 Q. 
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are generally greater than 0.7. The largest errors in this group occur for B close 
to 1.9 (pau h = 0.041). For pcov h > 7~ the errors do not appear to follow any 
regular pattern and are large even though B is generally below 0.7. The single low 
value in this group (last value for puv h = 1.h) occurs for B < 0.05 and may 
well be coincidental, but the author has not performed further iterations to check 
this point. It is clear that convergence is obtained for pav h < n; so not only does 
the SOR method converge when the matrix is diagonally dominant, but it will 
also converge when the off-diagonal terms are slightly dominant. 

(b) Accuracy 

The error estimates of Table 1 give an indication of the accuracy with which the 
iterative solution approaches the true solution to the difference equations. To 
estimate the corresponding accuracy for the E, solution we may use two methods: 

(i) The program for the continuity equation does not use the lower boundary 
values for E, . Hence, it is possible to calculate these values using the results of the 
E, iterations and the remaining boundary conditions. A comparison between 
calculated and known values will give a useful indication of magnitudes of errors. 

(ii) The net current across any row must total zero. Hence, the algebraic 
sum of the values of E, on any row must also be zero. The error, as a percentage 
of the sum of j E, 1 at all nodes on the row, will again be an indication of the 
accuracy of the solution. A typical calculation on a 37 x 37 mesh, using the 
parameters: 

12 = k = 11.25 x 1O-8 m, 
TV = 47r x lo-‘H/m, 
u = 5.36 x 106(Q - m)-I, 

pJ”h = 0.041, 

z’ = 5.4 = 106m/sec, 

was run with E, = 176 V/m at interphase boundaries and E, = 88 V/m as initial 
condition at internal nodes. Acceleration factors and error estimates are shown 
in Fig. 7 and Table 1. The following results were noted: 

E,,Jmin) = 2.88V/m, 

E,,,,(min) = Evl,,3B= 5.92 x 10-3V/m, 

L,Jmax) = Evz,3, = 3.12 x 10-2V/m. 

(i) Evi,,,IE,i.3 G 0.1, 
2<j<36 
2 < i < 36, 

(ii) 5 Eyi,j < 0.01 F I E,,.j I , 2 < j < 36. 
i=l z=l 
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(c) Asymmetry 

Figures 8 and 9 show, respectively, the effects of velocities of 5.4 x lo6 
and 5.4 x 10’ mjsec on a 400 x lo-lo m overall thickness film. The normal 
region is taken to be 400 x IO-lo m long, while TV = 4x x 10’ H/m and 
(J = 5.36 x lo6 m/set. The magnitude and direction of current density at each 

HELIUM BATH 

SUBSTRATE 

FIG. 8. Computed current flow patterns in normal region and adjacent conductor for a 
composite film thickness of 400 x 10-l” m, normal region length 1 = 400 x 10V” m, and 
run/r = 36.5 x 1O-B m-l. The magnitude and direction of current flow at each node is represented 
by the magnitude and direction of a line centred on the node. Direction of motion is to the left. 

HELIUM BATH 

SUBSTRATE 

FIG. 9. As Fig. 8, but with pooh = 36.5 x 1O-5 m-l. 
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node on a 37 x 37 mesh is represented by the magnitude and direction of a line 
centered on the node. Figure 8 shows that t~uv R= 40 >( lo-” m-l is sufficient to 
produce discernible asymmetry in films of this thickness. 

APPENDIX: TEMPERATURE DISTRIBUTION 

Though the solution to the temperature problem is, in mathematical terms, 
quite simple, it is also, for presently available materials, a very large computational 
problem. The reasons for this difficulty are discussed elsewhere [16, 201 but may 
be summarized as follows: 

The thermal conductivities h of presently available materials (say Sn, Cu) are 
of the order of 2000 W/(m - K) [21], while the coefficient for heat transfer il: 
between the thin films and the substrate (taken to be an infinite heat sink) is of the 
order of 1000 W/(m2 - K) [22]. The coefficient for direct transfer to the He bath 
is much lower and may be neglected [22]. Simple analysis then yields 

(T - THe) = (T, - T,,) exp[(-cW/ht)1/2 I] 

for the temperature Tin a composite film of thickness t, at a distance I away from 
the interphase boundaries. Hence T will tend to T,, only when I> t. For this 
situation a two dimensional numerical solution is impractical due to the overall 
dimension of the region of analysis. Furthermore, this situation is unsuitable for 
satisfactory line operation, which must wait for more suitable materials [20]. 

The mathematical problem has been resolved as follows: The general equation 
for the temperature rise 0 (= T - T,,) is 

C26’ - (Cy/A)@t3/2t) + G[X, Y, Z] = 0, (17) 

where G[X, Y, Z] represents the effects of heat generation, C = heat capacity and 
y = density. At the surfaces the rate of heat exchange is 

dg/dt = a . AB, 

and must equal the rate of heat flow normal to the surface: 

a . A0 = h(dB/dN). (18) 

As before, we use 5 = X - vt and rewrite Eq. (17) in two dimensions, as 

where 

(a”e/aP> + (228/2Y2) - (cyv/A)(ae/a.f) + W((, Y) = 0, (19) 

Wf, Yl = J& p. (20) 
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FIG. 10. Calculated temperature distributions in a moving normal region and the adjacent 
good conductor and superconducting phase. The temperature curves 1-8 correspond to the lines 
l-8 on the inset diagram. 

Equation (19) is similar to Eq. (4a) and may be resolved in the same manner. A 
program has been written, and typical results are shown in Fig. 10. The assumed 
conditions were: 

overall film thickness t = 3140 x lo-lo m, 

normal region length I = 3140 x lo-lo m, 
p = 47 x lO-7 H/m, 
(5 = 10s(sZ - m)-l, 

Y = 3 x lo5 m/s, 
h = 112.5 x lo-lo m, 

(pcwh) = 0.425, 
J = 1.76 x 1012 A/m2, 
h = 2000 W/(m - K), 
a = 1000 W/(m2 - K). 

8 is assumed to have fallen to zero at a distance I from the interphase boundaries, 
in order to reduce the size of the problem. Even so, the mesh contains 1465 nodes 
(29 x 85) and the solution is available after 240 temperature iterations. Examina- 
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tion of Fig. 10 reveals two points: (a) the temperature rise is nonsymmetrical, and 
(b) the assumed interphase boundaries require modification until they agree with 
computed results [16]. The nonsymmetries are less pronounced than those which 
would be obtained with reduced A. 
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